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We compared the effects of treatment with methylprednisolone or the 21-aminosteroids, U-74389 and U-74006F (Tirilizad mesylate), on hyperoxic
lung injury and the associated expression of mRNA for several adhesion molecules in rats. Inhalation of >95% oxygen for up to 72 hr in
Sprague-Dawley rats produced a marked increase in lung weight and an accumulation of fluid in the thorax when compared with air-breathing con-
trols. Hyperoxia also induced a marked neutrophil-rich influx of inflammatory cells into the bronchial lumen as measured by bronchoalveolar lavage.
Neutrophil numbers in bronchoalveolar lavage fluid peaked after 60 hr of exposure to > 95% oxygen; this was associated with a marked upregula-
tion of mRNA for the adhesion molecules P-selectin and E-selectin but not VCAM-1. mRNA for ICAM-1 was constitutively expressed at high levels
in both air-breathing controls and in the lungs of rats exposed to high concentrations of oxygen. Pretreatment with the 21-aminosteroids reduced
hyperoxic lung damage and improved survival times in animals exposed to >95% oxygen. However, treatment with methylprednisolone signifi-
cantly decreased survival times. Treatment with U-74389 did not significantly (p > 0.05) inhibit the BAL neutrophilia and did not significantly (p> 0.05)
reduce hyperoxia-induced increases in mRNA expression for P-selectin and E-selectin. The inhibition of hyperoxic lung damage coupled with
improved survival seen in treated animals suggests that 21-aminosteroids may provide valuable treatments for pulmonary disorders in which oxidant
damage has been implicated. - Environ Health Perspect 102(Suppl 10):193-200 (1994)
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Introduction
Although oxygen therapy has proved
invaluable in infants, children, and adults
with respiratory insufficiency, prolonged
exposure to oxygen can lead to lung cell
damage, lung fibrosis, bronchopulmonary
dysplasia, organ dysfunction, and death
from pulmonary edema (1). Presently, there
is no commonly accepted pharmacologic
treatment for patients suffering from the
harmful effects of hyperoxia. In addition to
hyperoxic lung injury, a number of clinical
and experimental pulmonary disorders
have been associated with increased oxidant
stress, where the local antioxidant defenses
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in the lungs are overwhelmed by the oxidant
burden arising from diverse sources. These
include ischemia followed by tissue reoxy-
genation, the administration of toxins that
augment intracellular oxidant formation,
and the accumulation of activated leukocytes
in the lung tissues. Clinical pulmonary dis-
orders in which oxidant damage has been
implicated include adult respiratory distress
syndrome (ARDS) (2-4), idiopathic pul-
monary fibrosis (5,6), cystic fibrosis (7-9),
emphysema (10,11), and asthma (12,13).

Modification of the basic structure of
methylprednisolone led to the introduction
of a new class of compounds, 21-amino-
steroids or "first-generation" lazaroids,
originally designed as nonglucocorticoid,
iron-dependent inhibitors of lipid peroxi-
dation (14,15). Members of this class of
compound have greater potency than
methylprednisolone in animal models of
central nervous system trauma and neuronal
membrane damage (16,17). Close struc-
tural analogs also inhibit antigen-induced
lung eosinophilia in animals (18) and

inhibit oxidant-mediated injury in isolated
rat lungs after ischemia/reperfusion or after
t-butylhydroperoxide challenge (19). It
would be of obvious interest to explore the
potential of these compounds in lung dis-
eases in which oxidant damage has been
implicated. In this article, we describe the
attenuation of hyperoxic lung injury in rats
following treatment with the 21-aminos-
teroids, U-74389* (21-[4-(2,6-di-1-pyrro-
lidinyl-4-pyrimidinyl)-1-sulfonate (Figure
1) or U-74006F (21-[4- (2,6-di-1-pyrro-
lidinyl-4-pyrimidinyl)-1 -piperazinyl] -16a-
methylpregna-1,4,9(11)-triene-3,20-dione
monomethane sulfonate (Figure 1), but
not following treatment with methylpred-
nisolone. We also compared the effects of
treatment with methylprednisolone or the
21-aminosteroids on survival times of rats
held in a hyperoxic environment for up to
96 hr.

*U-74389 was tested as either the methane sulfonic
acid (U-74389F) or maleic acid (U-74389G) salts.
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Figure 1. Chemical structures of methylprednisolone and the nonglucocorticoid 21-aminosteroids U-74389G and
U-74006F.

The role of the neutrophil in contribut-
ing to hyperoxic lung injury is controver-
sial, although it is well established that the
neutrophil burden in the lungs is markedly
increased after exposure to oxygen for 36
hr or more (20). The recruitment of neutro-
phils into inflamed lung tissue involves
multiple adhesion molecules and several
discrete steps, including rolling of the cells
on the activated endothelial cells, firm
adhesion to and migration through the
endothelial cells of the blood vessel wall
into the surrounding tissues, and in some
cases a further migration of the cells
through the airway epithelium into the
bronchial lumen (21-28).

In the present experiments we attempted
to correlate the time course of neutrophil
infiltration into rat lungs during exposure to
>95% oxygen, with the expression in lung
tissues ofmRNA, by Northern blot analysis,
for the adhesion molecules, P-selectin, vas-
cular cell adhesion molecule-I (VCAM-1),
endothelial leukocyte adhesion molecule-I
(ELAM-1; E-selectin), and intercellular
adhesion molecule-I (ICAM-1). We also
investigated the effects of treating rats with
the 21-aminosteroid U-74389F on the
hyperoxia-induced lung neutrophilia and on
the expression ofmRNA for the above adhe-
sion molecules during hyperoxic lung injury.
Methods
Induction and Tlme Course of
Hyperoxic Lung Injury in Rats
Groups of 6 to 12 male Sprague-Dawley

rats, 225 to 250 g, were housed in clear 40-I
plexiglass exposure chambers for the dura-
tion of the period of oxygen exposure. The
animals were supported on a stainless steel
mesh grid and were allowed food and water
ad libitum. The chambers were cleaned
twice daily and were equipped with sepa-
rate air-tight openings to allow feeding,
cleaning, and monitoring oxygen concen-
trations. One hundred percent oxygen was
delivered and exhausted through ports at
approximately five to seven volume changes
per hour to maintain a concentration of
>95% oxygen in the chambers. After expo-
sure to >95% oxygen or air for 24, 48, 60,
or 72 hr, the animals were killed by an over-
dose of urethane, ip, the lungs were removed,
weighed, dried overnight in an oven, and
reweighed. The volume of fluid accumulat-
ing in the thorax was also measured.

Animals were dosed, ip, 1 hr prior to
oxygen exposure and then twice daily
throughout the period of oxygen exposure
with vehicle (CS4), U-74389F, U-74006F,
or methylprednisolone. At various time
points after oxygen exposure, the rats were
killed with an overdose of urethane.

Bronchoalveolar Lavage
At 24, 48, 60, and 72 hr after exposure to
>95% oxygen, each rat was anesthetized
with 1.5 g/kg urethane, ip, the trachea was
cannulated and 5.0 ml of PBS was instilled
into the lungs. The tracheal cannula was
clamped and the thorax was massaged for
30 sec before recovering the bronchoalveolar

lavage (BAL) fluid. A further 5 ml PBS was
then instilled into the lungs, and the proce-
dure was repeated. Ten mililiters of Hank's
balanced salt solution (HBSS) containing
5% fetal calf serum was then added to the
pooled and recovered lavage fluid and vor-
texed. After centrifugation (15Og, 10 min,
40C) the supernatant was discarded and the
cells were resuspended in 5.0 ml HBSS
containing 5% fetal calf serum. For cyto-
logic examination, cytospin preparations
were made using a Shandon cytocentrifuge
(150g, 10 min, room temperature) (Shan-
don Southern Instruments, Sewickley, PA).
The cells were fixed and stained using Diff
QuikR (American Scientific Products,
McGraw Park, IL). Differential cell counts
on at least 100 cells were made using stan-
dard morphologic criteria to classify the
cells into eosinophils, neutrophils, and
mononuclear cells.

Preparation ofcDNA Probes
cDNA clones encoding rat P-selectin and
E-selectin were isolated by homology
cloning (Manning et al., manuscript in
preparation). A cDNA clone encoding rat
ICAM-1 (29) was kindly provided by
Tadashi Horiuchi (Daiichi Pharmaceutical
Co., Tokyo, Japan). A rat VCAM-1 cDNA
fragment was isolated by polymerase chain
reaction (PCR) from first-strand cDNA
synthesized from total RNA isolated from
the heart tissue of rats 3 hr after adminis-
tration of bacterial endotoxin. Gene-
specific oligonucleotides were designed
based on the available cDNA sequence for
rat VCAM-1 (30). The resulting PCR
product was subcloned and its authenticity
confirmed by DNA sequence analysis.

For use in hybridization protocols,
DNA fragments were prepared from these
cDNA clones by the PCR. Gene-specific
oligonucleotides were designed to generate
fragments of approximately 500 bp in
length from the P-selectin, VCAM-1, and
ICAM-1 cDNA clones, and 1.6 Kb in
length from the rat E-selectin cDNA clone.
The following oligonucleotide pairs were
used (5'oligo/3'oligo; each sequence as 5'
to 3'): P-selectin CGACTTGACTGT-
CACTCA/ACAAGTGAGATACACAG
encompassing sequences encoding the
cytoplasmic domain and 3' untranslated
region; E-selectin TTACTACTGGATTG-
GAATCAG/TGTTTCTGATTGTTTT-
GAACTTA encompassing sequences
encoding the EGF-like, complement regu-
latory-like repeats, the transmembrane and
cytoplasmic domains; ICAM-1 AGGTGT-
GATATCCGGTAGA/CCTTCTAAGT-
GGTTGGAACA encompassing the
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3'untranslated region; and VCAM-1 CCA-
AGCTATGCATTCAGACT/CTGAAA-
GTCAACCCAGTGAC encompassing the
3' untranslated region.

RNA Extaction and Northern Blot
Analysis
Total rat lung RNA was isolated using the
RNAzol (Cinna/Biotecx Laboratories
International, Inc., Friendswood, TX)
method, which is a modification of the
Chomczynski and Sacchi (31) single step
procedure. Equivalent amounts of RNA
(10 jig/lane) were denatured with glyoxal
and DMSO and applied to 1.5% agarose
gels. The RNA was transferred to Nylon 66
Plus membranes (Hoeffer Scientific, San
Francisco, CA) by vacuum blotting and
UV cross-linked. The blots were prehy-
bridized in hybridization buffer (1% BSA,
1 mM EDTA, and 7% SDS in 0.5 M
NaHPO4, pH 7.2) for 60 min and
hybridized overnight at 65°C. The blots
were then washed twice with 0.5% BSA, 1
mM EDTA, and 5% SDS in 40 mM
NaHPO4, pH 7.2, and four times with 1
mM EDTA and 1% SDS in 40 mM
NaHPO4, pH 7.2, all for 20 min at 65°C.
For probing with ,-actin, blots were prehy-
bridized in Hybrisol I (Oncor,
Gaithersberg, MD) for 60 min and
hybridized overnight at 52°C. Blots were
washed at 52°C in 0.1x SSC and 0.1%
SDS. After a brief rinse in Ix SSC, the
blots were exposed to Kodak XAR-2 X-ray
film for 1 to 3 days. Quantitation was per-
formed using a Phosphorlmager 425
(Molecular Dynamics, Sunnyvale, CA).

The probe for the metabolic enzyme
GAPDH was a 1.2-kb PstI insert fragment
from a plasmid containing the rat GAPDH
cDNA. The ,-actin cDNA probe was pur-
chased from Oncor (Gaithersburg, MD).
All probes were labeled with [a-32P]dATP
(6000 Ci/mmole; Dupont NEN, Boston,
MA) using the Prime-It Random Priming
Kit (Strategene, La Jolla, CA) to a specific
activity of 109 dpm/pg.
Statistical Analysis
Student's t-test for independent values was
used to test the significance of the differences
for mean values of lung weights or pleural
fluid volumes between vehicle-treated and
methylprednisolone or 21 -aminosteroid-
treated rats. An extension of Fisher's exact
test was used at each time point to test for
significant differences in numbers of ani-
mals surviving among the four groups
(vehicle-, methylprednisolone-, U74389G-,
or U-74006F-treated) taken collectively. If
this test was significant (p < 0.05) at a given
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Figure 2. Time course of hyperoxic lung injury: data
from air-breathing controls (left columns); >95% oxy-
gen (right columns). (A) changes in lung wet weight;
(B) lung wet weight to dry weight ratio; (C) volumes of
pleural fluid recovered at 24, 48, 60, and 72 hr.

time point, pairwise Fisher's exact tests
were carried out to determine significant
differences between the groups. Peto and
Peto's log rank test (32) also was applied
across time points to test for differences in
the distributions of survival times among
the four groups. Differences that produced
p-values less than 0.05 were accepted as
significant.

Care and Use ofAnimals
All procedures in this study are in compli-
ance with the Animal Welfare Act
Regulations, 9CFR Parts 1, 2, and 3 and
with the Guide for the Care and Use of
Laboratory Animals, DHEW Publication
(NIH) 85-23, 1985.
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Figure 3. Time course of neutrophil infiltration into the
airway lumen following inhalation of >95% oxygen for
24, 48, 60, and 72 hr. (A) neutrophils as a % of total
cells recovered in bronchoalveolar lavage fluid. (B)
absolute numbers of neutrophils recovered during
hyperoxic lung injury. Hatched columns: air-breathing
controls. Solid columns: >95% oxygen.

Results
TIme Course ofHyperoxic Lung
Injury, Neutrophil Influx, and
Expression ofP-selectin, E-selectin,
VCAM-1, and ICAM-1 mRNA in
Hyperoxic Lungs
Exposure of rats to >95% oxygen for up to
72 hr induced a progressive decrease in
body weight and increasing lung damage,
demonstrated by a marked and significant
(p < 0.05) increase in wet lung weight
(Figure 2A), but no significant (p> 0.05)
change in dry lung weight. Consequently,
hyperoxia also induced a significant
increase in the lung wet weight to dry
weight ratio (Figure 2B). Hyperoxia also
produced a marked and significant
(p < 0.05) accumulation of fluid in the tho-
rax at 60 hr after the initial exposure to
>95% oxygen (Figure 2C). These changes
were associated with a neutrophil-rich
accumulation of inflammatory cells in the
lungs (Figure 3A,B). Forty-eight hours
after exposure to >95% oxygen there was a
small but significant (p < 0.05) increase in
the numbers of neutrophils recovered from
BAL fluid. Sixty hours after exposure there
was a marked infiltration of the bronchial
lumen with inflammatory cells, neutrophils
comprising approximately 30% of the total
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Figure 4. Northern blot analysis of mRNA for P-
selectin, VCAM-1, and E-selectin before (O hr) and 48,
54, 60, and 66 hr exposure to >95% oxygen. Lung tis-
sues were taken from rats treated with U-74389G (30.0
mg/kg, ip) bid (+) or vehicle (-) throughout the period of
oxygen exposure.

Treatment

Figure 6. Effect of treatment with methylprednisolone
and the 21-aminosteroids U-74389F and U-74006F on
increases in lung weight induced by breathing >95%
oxygen for 60 hr in Sprague-Dawley rats. Significant
difference between vehicle and drug-treated animals,
*p<0.05.
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Figure 7. Effect of treatment with methylprednisolone
and the 21-aminosteroids U-74389F and U-74006F on
the accumulation of thoracic fluid in Sprague-Dawley
rats breathing >95% oxygen for 60 hr. *Significant dif-
ference between vehicle and drug-treated animals,
p< 0.05.
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Figure 5. Northern blot analysis of mRNA for ICAM-1,
before (0 hr) and 48, 54, 60, and 66 hr exposure to 95%
oxygen. Blots were probed for GAPDH and I-actin.

cells in the BAL fluid (Figure 3B). The
time course of neutrophil infiltration corre-

lated with a marked upregulation of
mRNAs for P-selectin and E-selectin, and a

small upregulation of mRNA for VCAM-1
(Figure 4). ICAM-1 was constitutively
expressed at a high level in both air-breath-
ing and hyperoxic rats, and the levels did
not change significantly during the progres-

sion of hyperoxic lung injury (Figure 5).

Effect ofMethylprednisolone,
U-74389F, and U-74006F on
Hyperoxic Lung Injury
Because some animals died after exposure

to > 95% oxygen for periods longer than 60
hr, we decided to evaluate compound
activity in this model in animals exposed to

> 95% oxygen for 60 hr. At this time point
all animals survived but there were marked
and significant (p< 0.05) increases in lung
weight and fluid accumulation in the tho-
rax when compared with air-breathing con-

trols. Pretreatment with 1, 3, and 10
mg/kg methylprednisolone, ip, 1 hr before
oxygen exposure and then twice daily
throughout the period of oxygen inhalation
produced no significant (p> 0.05) effect on
the hyperoxia-induced increases in lung
wet weight (Figure 6 ) or pleural fluid
accumulation (Figure 7). U-74006F, at all
the dose levels tested and using the same

dosing regimen as that for methylpred-

nisolone, produced a marked and
statistically significant (p< 0.05) inhibition
of the oxygen-induced increases in pleural
fluid, but not on the changes in lung
weights. U-74389F also produced a

significant (p< 0.05) inhibition of the oxy-

gen-induced increases in pleural fluid at all
doses and significantly inhibited (p<0.05)
the increases in lung weight at the 10
mg/kg, ip, dose level (Figures 6, 7).

After demonstrating inhibition of
hyperoxic lung injury with the 21-amino-
steroids, but not with methylprednisolone,
we wished to determine if these agents
would influence the survival rates of rats

exposed to >95% oxygen. When survival
times were compared in groups of 12 ani-
mals exposed to >95% oxygen for up to 96
hr, we found that methylprednisolone 10-
mg/kg, bid, treatment significantly
(p< 0.05) decreased survival time, while
both of the 21-aminosteroids (U-74389G
and U-74006F) 10 mg/kg bid significantly
(p <0.05) increased survival times (via the
logrank test as well as the Fisher's exact

tests shown in Table 1). Under the experi-
mental conditions described here, we

found that exposure to 95% oxygen for 72
hr resulted in the death of approximately
50% of untreated rats or rats treated with

Table 1. Effect of methylprednisolone and the 21-aminosteroids U-74006F and U-74389G (10 mg/kg bid) on sur-
vival times of Sprague-Dawley rats exposed to >95% oxygen.

Time after 02 exposure, hra
Treatment 0 48 56 72 78 84 96

Vehicle 12/12 12/12 12/12 5/12 1/12 0/12 0
Methylprenisolone 12/12 12/12 9/12 0/12* 0 0 0
U-74006F 12/12 12/12 12/12 6/12 5/12 5/12* 4/12*
U-74389G 12/12 12/12 12/12 8/12 7/12* 5/12* 5/12*
aThe data show the numbers of animals surviving/12. *Significant differences from vehicle-treated animals,
p < 0.05. Note that the 21-aminosteroids significantly improved survival rates while methylprednisolone reduced
survival rates.

Table 2. Effect of the 21 -aminosteroid U-74389G (30 mg/kg bid) on the expression of mRNA for the adhesion mol-
ecules ICAM-1, VCAM-1, E-selectin, and P-selectin in rat lung tissues.a

Time after
02 exposure, hr U-74389G ICAM-1 VCAM-1 E-Selectin P-Selection

48 - 1.2 ± 0.1 1.3 ± 0.4 1.9 ± 1.3 1.1 ± 0.2
+ 1.8±0.4 2.7±0.9 3.1 ±1.9 2.8±2.2

54 - 1.4±0.2 1.7±0.8 2.6±2.8 1.5±0.6
+ 1.7±0.5 2.0±0.9 2.5±1.0 1.8±0.6

60 - 1.6±0.4 1.8±0.7 16.2±9.0 10.5±3.6
+ 1.4±0.4 1.5±0.6 8.4±4.9 6.3±2.8

66 - 1.8±0.3 2.9±2.2 12.6± 18.9 8.1 ±2.7
+ 1.6±0.3 1.5±0.4 8.8±2.7 12.8±8.8

aThe data show the fold increase in the levels of mRNA over the levels in air-breathing controls.
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vehicle alone. All rats treated with methyl-
prednisolone died by 72 hr, whereas
approximately 50% of animals treated with
the 21 -aminosteroids survived to 96 hr.
We also explored the effects of treat-

ment with one of the 21 -aminosteroids, U-
74389, (30.0 mg/kg, bid, ip) on the
accumulation of neutrophils in the lung,
and the expression ofmRNA for P-selectin,
E-selectin, ICAM-1, and VCAM-1 during
the development of hyperoxic lung injury.
We found that U-74389 did not
significantly affect the numbers of neu-
trophils appearing in BAL fluid, nor did it
significantly affect the levels of expression
ofmRNA for P-selectin, VCAM-1, ICAM-
1, or E-selectin (Table 2).

Discussion
It is now well established that prolonged
oxygen therapy causes a progressive pul-
monary edema and lung damage in all
species studied so far, including humans
(1,33,34). To date, there is no commonly
accepted pharmacologic intervention for
the treatment of this disorder and the
mechanisms by which hyperoxia induces
cell damage have not been fully elucidated.
However, there is strong evidence that oxy-
gen-derived free radicals (superoxide anion
and hydroxyl radical), hydrogen peroxide,
and peroxidation products of lipids play a
significant role and therefore lead to an
increase in capillary permeability and lung
edema. Thus, studies in animal models of
hyperoxic lung injury show that interven-
tions which increase antioxidant enzymes
correlate positively with increased survival
(35-39), while those that compromise
antioxidant defenses decrease survival
(40-44). There are numerous other exam-
ples. Preexposure of rats to 85% oxygen
induces tolerance to the effects of subse-
quent exposure to 100% oxygen and this is
associated with an increase of lung levels of
superoxide dismutase, an enzyme which
converts °2 to H202 (35). In accordance
with these findings, treatments with super-
oxide dismutase or catalase have been
shown to be protective against oxygen toxi-
city (45,46). In addition, hyperoxia also
has been shown to increase oxygen radical
production in rat lung homogenates (47),
while oxygen metabolite scavengers inhibit
hyperoxic lung injury (48) and protect
alveolar macrophages from hyperoxic
injury in vitro (49). Lipid peroxides also
have been shown to be directly toxic to
alveolar cells (50). The above findings sup-
port the view that hyperoxic lung injury
occurs as a result of the natural antioxidant
defenses being overwhelmed by the

increased oxidant stress resulting from
breathing high oxygen concentrations.
Therapeutic interventions that might
attenuate the oxidant stress would be of
obvious value in this disorder.

Previously, we demonstrated an inhibi-
tion of hyperoxic lung injury after treatment
with the nonglucocorticoid 21-aminosteroid
U-74389F (51). 21-Aminosteroids were
originally designed as inhibitors of iron-
dependent lipid peroxidation (15) and are
effective in animal models of CNS trauma
and neuronal membrane damage (16,17).
In the present study, we showed that the
inhibitory properties of U-74389F on
hyperoxic lung injury, as measured by the
inhibition of the hyperoxia-induced accu-
mulation of pleural fluid, was shared by a
close structural analog, U-74006F (Tirilizad
mesylate), a compound that is currently
being evaluated for the treatment of head
and spinal cord injury in humans. In con-
trast, methylprednisolone, when tested at
the same dose levels and under the same
dosing regimen, failed to demonstrate any
protection of hyperoxic lung injury.
Furthermore, when we compared survival
times of rats exposed to >95% oxygen,
methylprednisolone treatment reduced sur-
vival times, while the nonglucocorticoid
21-aminosteroids U-74389G and U-
74006F significantly increased survival
times. Although we have not explored the
mechanisms by which methylprednisolone
exacerbated oxygen toxicity, a similar
decrease in survival times has been
described by other investigators after gluco-
corticoid pretreatment of sheep (52), mice
(53), and rats (54). Interestingly, the latter
investigators showed that, although dexam-
ethasone exacerbated lung damage and
diminished survival when given early dur-
ing exposure to hyperoxia, they were able
to demonstrate an improved survival if
given when the hyperoxia was soon to be
terminated. In sheep, glucocorticoid treat-
ment potentiated oxygen toxicity irrespec-
tive of the time of treatment (52). The
abundance of experimental data, including
our own, that suggests glucocorticoid treat-
ment is deleterious to animals breathing
high concentrations of oxygen may indicate
that these agents should be avoided in clin-
ical settings that require inhalation of high
fractions of inspired oxygen. However, at
the present time, high-dose steroids provide
the only available pharmacologic treatment
for patients with severe spinal cord injuries,
and these patients often require ventilation
with oxygen.

The effects of U-74389 and U-74006F
in preventing hyperoxic lung injury and

prolonging survival times in rats in our
experiments are consistent with a recent
report by Frank and McLauglin (55) that
showed treatment of neonatal rats with U-
74389F protected against the oxygen-
induced inhibition of normal lung
development. These investigators showed
that the normal septation of the large air
saccules at birth to form smaller diameter
alveoli, with a much increased surface area,
is markedly inhibited by hyperoxia. The
model showed a very similar lung pathol-
ogy to that which occurs in infants who
had died with bronchopulmonary dysplasia.
Treatment of 4-day-old rat pups for 10
days with U-74389F markedly reduced the
oxygen-induced inhibition of normal lung
development. Similarly, the oxygen-
induced inhibition of elastin deposition,
which is intimately involved in the septa-
tion process, was ameliorated by U-74389F
treatment.

In addition to hyperoxic lung injury,
21-aminosteroids have also been shown to
be efficacious in other models of pul-
monary oxidant damage. Thus U-74500A,
a close structural analog of the compounds
tested here, has been shown to prevent oxi-
dant-mediated injury in isolated rat lungs
after ischemia/reperfusion or after t-butyl-
hydroperoxide challenge (19). U-74389F
also offers some protection against
bleomycin-induced pulmonary fibrosis in
rats (56). U-74500A and U-74389F also
protect pulmonary endothelial cells against
oxidant-dependent injury induced by neu-
trophils (57).

The mechanisms by which 21-amino-
steroids inhibit hyperoxic lung injury are
yet to be elucidated. However, these com-
pounds are potent inhibitors of lipid perox-
idation (15,58) and are highly lipophilic,
distributing preferentially to the lipid
bilayer of cell membranes where they have
been shown to exert potent stabilizing
effects (59,60). Consequently, it has been
proposed (61) that these compounds exert
their antilipid peroxidation activity
through cooperative mechanisms, a radical
scavenging action, and a physicochemical
interaction with cell membranes that
decreases membrane fluidity. This proposi-
tion is consistent with the compounds'
effects on hyperoxic lung injury in vivo,
where stabilization of endothelial cell mem-
branes would reduce hyperoxia-induced
increases in capillary permeability and pul-
monary edema.

In our experiments, hyperoxic lung
injury in rats was associated with a progres-
sive increase in the numbers of neutrophils
that could be washed out of the bronchial
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lumen by lavage. This was consistent with
findings from other laboratories in which
increases in the numbers of radiolabeled
neutrophils were detected during hyperoxic
lung injury (20). To determine if there was
a temporal association between the appear-
ance of neutrophils in the bronchoalveolar
lavage fluid and the expression of mRNA
for the adhesion molecules, ICAM-1, E-
selectin, VCAM-1, or P-selectin, we
exposed rats to an atmosphere of >95%
oxygen for up to 72 hr. Quantitation of
mRNA for E-selectin and P-selectin in
hyperoxic lung tissue demonstrated marked
increases in both selectin molecules after
prolonged exposure to oxygen, at 60 and
66 hr. This was temporally associated with
the influx of neutrophils into the lungs and
is consistent with the view that P-selectin
expression on activated endothelial cells first
promotes rolling of these cells (22,25) via
interaction with neutrophil carbohydrate
ligands (e.g., sialyl Lewisx) presented by L-
selectin, which is expressed at high levels
on circulating resting neutrophils, and is
constitutively functional (21). Following
rolling of neutrophils, firm adhesion and
transmigration through endothelial cells
may then be mediated through the inte-
grins LFA-1 and MAC-I on the neutrophil
surface with ICAM-1 on the endothelial
cells. The increase in mRNA for E-selectin
in hyperoxic lung tissue, and the associated

neutrophilia seen in our experiments in
rats, also is consistent with the observation
that adhesion of neutrophils to endothelial
cells can be mediated via L-selectin on the
neutrophil surface with upregulated E-
selectin on endothelial cells (22). This is in
contrast to studies in mice (62) in which
no upregulation of E-selectin mRNA was
observed. Messenger RNA for ICAM-1
was constitutively expressed at high levels
in air-breathing and hyperoxic rats, and no
perceptible change was observed during the
development of hyperoxic lung damage.
This is in contrast to hyperoxic lung injury
in murine lung tissue in which an increase
in mRNA for ICAM-1 has been reported
(63) and antiICAM-1 monoclonal anti-
body treatment partially inhibits hyperoxic
lung injury (64). Signals for VCAM-1
were weak in rat lung tissues, but nonethe-
less, a slight increase in expression occurred
at >54 hr of hyperoxia. The precise contri-
bution made by each of the different adhe-
sion molecules to leukocyte trafficking in
hyperoxic lung injury may be best exam-
ined using deficient or mutant mice that
lack the expression of P-selectin, CD18,
and ICAM-1 (65-67).

When rats were pretreated with the 21-
aminosteroid U-75389, we saw no
significant inhibition of the neutrophil
influx into bronchoalveolar lavage fluid and
no significant inhibition of the bron-

choalveolar neutrophilia or the expression
of mRNA for the different adhesion mole-
cules. We conclude from this that the
effects of U-74389 cannot be ascribed to
the inhibition of neutrophil trafficking into
the lungs. The ability of 21-aminosteroids
to prevent lung damage and promote sur-
vival of hyperoxic rats also adds further
support to the view that neutrophil prod-
ucts do not contribute to the early (<60 hr)
lung damage that occurs during exposure
to very high concentrations of oxygen.
Ibuprofen has been shown to inhibit neu-
trophil influx during hyperoxia in rabbits
without preventing lung damage (68), and
neutrophil depletion with cytotoxic drugs
does not prevent acute hyperoxic injury
(69,70). However it is likely that reactive
oxygen metabolites from neutrophils serve
to exacerbate lung damage during long-
term exposure to high oxygen concentra-
tions. It would be interesting to explore the
effects of 21-aminosteroids in such a
model.

The inhibition of hyperoxic lung dam-
age by 21-aminosteroids, coupled with the
improved survival seen in treated animals,
suggests that 21-aminosteroids and their
derivatives may be of potential clinical use
in treating hyperoxic lung injury and other
pulmonary conditions, such as ARDS, in
which oxidant injury may contribute to the
pathophysiology.
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